If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=17+28
We move all terms to the left:
3x^2-(17+28)=0
We add all the numbers together, and all the variables
3x^2-45=0
a = 3; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·3·(-45)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*3}=\frac{0-6\sqrt{15}}{6} =-\frac{6\sqrt{15}}{6} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*3}=\frac{0+6\sqrt{15}}{6} =\frac{6\sqrt{15}}{6} =\sqrt{15} $
| 1=5×3.14×n | | 4x+9*1/2=3x*7/3 | | u-6.22=7.85 | | 4.5x=7/3 | | v+7.7=9.17 | | 10r−5r=20 | | 3x/7-x/7=20 | | 36^4n-3=216 | | 1/12y-8=-8 | | 7(u-6)=2u-37 | | -8x-31=7(x+2) | | 3(x+2)=9x-42 | | 6(x+5)-2x=2 | | -19=-8w+5(w-5) | | 10−5x=−20 | | 28=2(u=2)-8u | | 5y+4(y-4)=-34 | | 12x3x=60 | | 232=-v+33 | | 171-x=72 | | 75-w=182 | | -10-3(2x+1)18x-1=0 | | 9(x/3+1)=≥6 | | 9/11=x^2 | | 2/x=7.1/60 | | -1-6z+3=2 | | 1-3y-1=-14 | | 3x+3/4=4x-3/4= | | 4x+28=100 | | x+3=7x=10 | | 2/3x=193 | | x^2+3x-4096=0 |